SOUND METER KIT

HOW LOUD WAS THAT NOISE? FIND OUT WITH THIS

ESSENTIAL INFORMATION

BUILD INSTRUCTIONS
CHECKING YOUR PCB & FAULT-FINDING
MECHANICAL DETAILS
HOW THE KIT WORKS

Version 2.0
Build Instructions

Before you start, take a look at the Printed Circuit Board (PCB). The components go in the side with the writing on and the solder goes on the side with the tracks and silver pads.

PLACE RESISTORS

Start with the two resistors:
The text on the PCB shows where R1 and R2 go.
Ensure that you put the resistors in the right place.

<table>
<thead>
<tr>
<th>PCB Ref</th>
<th>Value</th>
<th>Colour Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10K</td>
<td>Brown, black, orange</td>
</tr>
<tr>
<td>R2</td>
<td>1.5K</td>
<td>Brown, green, red</td>
</tr>
</tbody>
</table>

SOLDER THE IC HOLDERS

Solder the two Integrated Circuit (IC) holders into IC1 and IC2. When putting them into the board, be sure to get them the right way around. The notch on the IC holder should line up with the notch on the lines marked on the PCB.

SOLDER THE ELECTROLYTIC CAPACITORS

Now solder in the five electrolytic capacitors. Make sure that the capacitors are the correct way around. The capacitors have a '-' sign marked on them, which should match the same sign on the PCB. The leads should be bent so that the capacitors end up flat on the board. The capacitors have text printed on the side that indicates their value. The capacitors are placed as:

<table>
<thead>
<tr>
<th>PCB Ref</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 & C2</td>
<td>1μF</td>
</tr>
<tr>
<td>C3 & C4</td>
<td>10μF</td>
</tr>
<tr>
<td>C7</td>
<td>220μF</td>
</tr>
</tbody>
</table>

SOLDER THE CERAMIC DISC CAPACITORS

The two ceramic disc capacitors should be soldered into the board as follows:

<table>
<thead>
<tr>
<th>PCB Ref</th>
<th>Value</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>10nF</td>
<td>103</td>
</tr>
<tr>
<td>C6</td>
<td>100nF</td>
<td>104</td>
</tr>
</tbody>
</table>

SOLDER THE TRIMMER POTENTIOMETER

The trimmer potentiometer should be soldered into the board where it is marked R3.
The microphone should be soldered into the board where it is marked M1. The microphone is polarized (the two pins are off centre). For it to work the part must go inside the circle marked on the PCB.

The ten Light Emitting Diodes (LEDs) should be soldered into the board. The LEDs won’t work if they don’t go in the right way around. If you look carefully one side of the LED has a flat edge, which must line up with the flat edge on the lines on the PCB. You may want to solder them in at a specific height depending upon how you have designed your enclosure (if you are making one). LED1 to LED5 should be green, LED6 to LED8 yellow and LED9 and LED10 should be red.

The PP3 battery clip should be attached to the terminals labelled ‘POWER’. Connect the red wire to ‘+’ and the black wire to ‘-’ after feeding it through the strain relief hole.

The two ICs can now be placed into the IC holders, when doing this make sure that the notches on the ICs line up with the IC holder.
Checking Your Sound Meter PCB

Carefully check the following before you insert the batteries:

Check the bottom of the board to ensure that:
- All holes (except the 4 large (3mm) holes in the corners) are filled with the lead of a component.
- All the leads are soldered.
- Pins next to each other are not soldered together.

Check the top of the board to ensure that:
- The ‘-’ on the capacitors match the same marks on the PCB.
- The colour bands on R1 are brown, black, orange.
- C1 and C2 are a 1µF capacitor and C7 is a 220µF capacitor.
- C5 is marked 103.
- All of the LEDs match the outline on the PCB.
- The battery clip red and black wires match the red & black text on the PCB.
- The notch on the small IC is next to the LEDs and the notch on the large IC is next to C6.

Trimming the gain resistor (R3)

Turn the trimmer fully anti-clockwise. Then in a quiet room, slowly bring it back in a clockwise direction until just LED1 is left illuminated.
Adding an On / Off Switch

If you wish to add a power switch, don’t solder both ends of the battery clip directly into the board, instead:

1. Solder one end of the battery clip to the PCB, either black to ‘-’ or red to ‘+’.

2. Solder the other end of the battery clip to the on / off switch.

3. Using a piece of wire, solder the remaining terminal on the on / off switch to the remaining power connection on the PCB.
Sound Meter Essentials

Fault finding flow chart - page 1

Start
Set the trimmer fully anti-clockwise, then power the board up

Do any LEDs light?

Yes

No

Were any LEDs missing?

Yes

No

Are all the LEDs now off?

Yes

No

Are some or all LEDs dim?

Yes

No

Check
• The battery is good and in the right way around.
• Check the power clip is connected the right way around and soldered correctly.
• R3 for dry joints.
• IC1 for dry joints on pins 5 to 7.
• IC2 for dry joins or shorts on pins 2 to 9.
• For shorts on C2 or C7.
• For dry joints on C4.

Check
• IC1 pins 1 to 4 and 6&7 for shorts.
• IC1 for dry joints on pin 3/4.
• The notch on IC1 is next to the LEDs.
• C1 for a short.

Check
• IC1 pins 1 & 8 for dry joints.
• IC1 pins 5&6 for a short.
• C2 & C3 for dry joints.

Check
• R2 for dry joints and that it is 1.5K (brown, green, red).
• IC2 pins 7&8 for a short.
• IC2 pin 8 for dry joints.

Which LED was missing?

LED1 Is LED1, backwards, shorted or has a dry joint? Dry joint on IC2 pin 1.
LED2 Is LED2, backwards, shorted or has a dry joint? Dry joint on IC2 pin 18.
LED3 Is LED3, backwards, shorted or has a dry joint? Dry joint on IC2 pin 17.
LED4 Is LED4, backwards, shorted or has a dry joint? Dry joint on IC2 pin 16.
LED5 Is LED5, backwards, shorted or has a dry joint? Dry joint on IC2 pin 15.
LED6 Is LED6, backwards, shorted or has a dry joint? Dry joint on IC2 pin 14.
LED7 Is LED7, backwards, shorted or has a dry joint? Dry joint on IC2 pin 13.
LED8 Is LED8, backwards, shorted or has a dry joint? Dry joint on IC2 pin 12.
LED9 Is LED9, backwards, shorted or has a dry joint? Dry joint on IC2 pin 11.
LED10 Is LED10, backwards, shorted or has a dry joint? Dry joint on IC2 pin 10.
Fault finding flow chart - page 2

* If the battery voltage is below 7V under load, only some of the LEDs will be lit and flickering won’t be seen. For testing an alkaline battery is recommended.

Continued from page 1

Are the LEDs flickering on & off?*

Yes

Turn the trimmer R3 clockwise until only LED1 is on.

No

Are the LEDs constantly on?

Yes

Check
- The notch on IC2 is next to the capacitor (C6).
- R3 for dry joints.
- IC1 pins 7 & 8 for dry joints.
- IC2 pin 5 for a dry joint.

No

Check
- C3 for shorts.
- C7 for dry joints.

Was this possible?

Yes

No – all the LEDs when off or the red / yellow LEDs were left on.

Check
- IC2 pins 5 & 6 for a short.
- IC2 pin 4 & 6 for a dry joint.

No

When there is a lot of noise do all LEDs light?

Yes

Check
- R1 for dry joints.
- C1 for dry joints.
- C4 for a short.
- C6 for dry joints.

No

Is LED1 very bright / discoloured?

Yes

There is a short on IC2 pins 1&2.

Look carefully, on power up did the LEDs light one at a time from LED10 down to LED1?

No

There is a dry joint on pin 9.

Stop

Designing the Enclosure

When you design the enclosure, you will need to consider:

- The size of the PCB (below, height including components = 9mm).
- How big the 9V PP3 battery is.

This technical drawing of the sound meter PCB should help you to plan this.

Mounting the PCB to the enclosure

The drawing to the left shows how a hex spacer can be used with two bolts to fix the PCB to the enclosure.

Your PCB has four mounting holes designed to take M3 bolts.
How the Sound Meter Works

The sound meter circuit uses a microphone to detect sound and then uses a number of LEDs to indicate the how loud the sound is.

First of all the sound is detected by the microphone. This is then fed into the LM386 op amp via capacitor C1. This capacitor removes any DC offset from the signal generated by the microphone. The op amp amplifies (increases) the signal to a level that can be used. This is because the signal from the microphone is very small. The gain of the LM386 in this circuit is 200 and is set by capacitor C3.

The amplified signal is then filtered again by capacitors C2 and C4, which remove any DC offset and high frequency noise.

The LM3914 chip then looks at the size of this signal and lights up the relevant number of LEDs. It does this by generating a 1.2V reference voltage. A proportion of this is then fed into 10 comparators (inside the LM3914). Each comparator, in turn, is fed with a slightly lower proportion of the 1.2V reference voltage. For example the first comparator will get the full 1.2V, the next 1.1V, the next 1.0V, etc. The comparators are also then fed the amplified signal from the microphone. If this signal is bigger than the comparators reference voltage, then the comparator turns on its LED. The louder the sound, the bigger the signal from the microphone and the more LEDs come on.

Resistor R3 is used to adjust the amount of signal fed to the LM3914 chip and can, therefore, be used to adjust the scale to the desired level.
Online Information

Two sets of information can be downloaded from the product page where the kit can also be reordered from. The ‘Essential Information’ contains all of the information that you need to get started with the kit and the ‘Teaching Resources’ contains more information on soldering, components used in the kit, educational schemes of work and so on and also includes the essentials. Download from:

www.kitronik.co.uk/2142

Every effort has been made to ensure that these notes are correct, however Kitronik accept no responsibility for issues arising from errors / omissions in the notes.

© Kitronik Ltd - Any unauthorised copying / duplication of this booklet or part thereof for purposes except for use with Kitronik project kits is not allowed without Kitronik’s prior consent.