CREATE YOUR OWN SPEAKER DOCK WITH THIS

STEREO AMPLIFIER KIT
Build Instructions

Before you start, take a look at the Printed Circuit Board (PCB). The components go in the side with the writing on and the solder goes on the side with the tracks and silver pads.

1. **PLACE RESISTORS**

Start with the six resistors:

<table>
<thead>
<tr>
<th>PCB Ref</th>
<th>Value</th>
<th>Colour Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 & R2</td>
<td>10K</td>
<td>Brown, black, orange</td>
</tr>
<tr>
<td>R3 & R4</td>
<td>4.7Ω</td>
<td>Yellow, purple, gold</td>
</tr>
<tr>
<td>R5 & R6</td>
<td>100K</td>
<td>Brown, black, yellow</td>
</tr>
</tbody>
</table>

2. **SOLDER THE IC HOLDER**

Solder the Integrated Circuit (IC) holder in to IC1. When putting this into the board, be sure to get it the right way around. The notch on the IC holder should line up with the notch on the lines marked on the PCB. Once this has been done insert the 8 pin IC into this socket, making sure that the notch on the device matches the notch on the IC holder.

3. **SOLDER THE CERAMIC DISC CAPACITORS**

There are two ceramic disc capacitors (as shown right). These should be soldered into C6 and C7. It does not matter which way around they go.

4. **SOLDER THE ELECTROLYTIC CAPACITORS**

Now solder in the five electrolytic capacitors (an example is shown right). The capacitors have text printed on the side that indicates their value. The capacitors are placed as:

C1 and C2 = 100μF. C3 = 10μF. C4 and C5 = 470μF.

Make sure that the capacitors are the correct way around. The capacitors have a ‘−’ sign marked on them, which should match the same sign on the PCB.

5. **CONNECT THE SPEAKERS**

The kit is supplied with a meter of twin cable. This cable will be used to connect the two speakers. You will need to cut this to the required length for each speaker in your enclosure design. Take each piece of wire that you have cut off and strip the ends of the wire. Connect one end of each to the two terminals on the speaker (shown right) and the other end of each to the terminals on the PCB marked ‘SPEAKER1’ and ‘SPEAKER2’, after feeding it through the strain relief hole. It does not matter which way around these connections go.
ATTACH THE BATTERY CLIP

The PP3 battery clip should be attached to the terminals labelled ‘POWER’. Connect the red wire to ‘+’ and the black wire to ‘-’ after feeding it through the strain relief hole.

CONNECT THE AUDIO CABLE

The stereo Jack lead should be connected to the ‘INPUT’ terminal. First, feed the wires through the strain relief hole. The black wire should be connected to the terminal labelled ‘BLK’. The other two can go the either of the two remaining inputs.

Checking Your Amplifier PCB

Carefully check the following before you insert the batteries:

Audio equipment may become damaged if connected to an incorrectly built amplifier.

Check the bottom of the board to ensure that:

- All holes (except the 4 large (3mm) holes in the corners) are filled with the lead of a component.
- All these leads are soldered.
- Pins next to each other are not soldered together.

Check the top of the board to ensure that:

- The four wires are connected to the right place.
- The ‘-’ on the capacitors match the same marks on the PCB.
- The colour bands on R1 & R2 are brown, black, orange.
- The colour bands on R3 & R4 are yellow, purple, gold.
- C3 is a 10μF capacitor.
- The battery clip red and black wires match the red and black text on the PCB.
- The notch on the IC is next to C1 & C4.
Adding an On / Off Switch

If you wish to add a power switch, don’t solder both ends of the battery clip directly into the board, instead:

1. Solder one end of the battery clip to the PCB, either black to ‘-’ or red to ‘+’.

2. Solder the other end of the battery clip to the on / off switch.

3. Using a piece of wire, solder the remaining terminal on the on / off switch to the remaining power connection on the PCB.
Fault finding flow chart

Start
Power up the board with it connected to a music source

Are the speakers making any kind of sound?

Yes

No

Is the speaker playing the music clearly?

Yes

No it’s loud or distorted

Is the speaker, R1 & R2 for dry joints
R1, R2, R3 & R4 are in the correct place

Check
• The black jack wire, R1 & R2 for dry joints
• R1, R2, R3 & R4 are in the correct place

Check
• For a dry joint on C1, R2 or IC1 pins 5 & 6

Yes

Is one of the speakers very quiet?

Yes

Check
• For a dry joint on C1, R2 or IC1 pins 5 & 6

No

Stop

Check
• IC1 is in the right way around
• For dry joints on the power connectors
• The input connector is in the right place and the red and black wire are the correct way around
• IC1 for dry joints on pins 2 & 4
• C3 and IC1 pins 3 & 4 for shorts

Speaker 1

Which speaker is their no sound from?

Speaker 2

Check
• The wire connections on speaker 2 for dry joints on the PCB and speaker
• The black jack wire is in the Blk ‘Input’ connection and In2 for a dry joint
• R6, C5 & IC1 pins 3 & 6 for dry joints
• R2 is in the correct place
• C2 and IC1 pins 2 & 3, 5 & 6 for shorts

Check
• The wire connections on speaker 1 for dry joints on the PCB and speaker
• The black jack wire is in the Blk ‘Input’ connection and In1 for a dry joint
• R5, C4 & IC1 pins 1 & 7 for dry joints
• R1 is in the correct place
• C1 and IC1 pins 1 & 2, 7 & 8 for shorts
Designing the Enclosure

When you design the enclosure, you will need to consider:

- The size of the PCB (below left, height including components = 15mm).
- How big the batteries are.
- How to mount the two speakers (below right).
- How to allow the audio cable out of the box.
- Are you making the amplifier for a particular MP3 player, if so should the MP3 player go in the box?

These technical drawings of the amplifier PCB and speaker should help you to plan this.

Mounting the PCB to the enclosure

The drawing to the left shows how a hex spacer can be used with two bolts to fix the PCB to the enclosure.

Your PCB has four mounting holes designed to take M3 bolts.
How the Amplifier Works

At the centre of the circuit is an audio amplifier Integrated Circuit or IC. Inside the IC are lots of transistors, which are connected together to allow the small input signal to be amplified into a more powerful output that can drive a speaker.

All amplifiers need to use feedback to ensure that the amount of gain stays the same. This allows the output to be an exact copy of the input, just bigger. The gain is the number of times bigger the output is compared to the input. So if an amplifier has a gain of 10 and there is 1 volt on the input, there will be 10 volts on the output. An operational amplifier has two inputs, these are called the inverting (-) and non-inverting (+) inputs. The output of the operational amplifier is the voltage on the non-inverting input less the voltage on the inverting input, multiplied by the amplifier’s gain. In theory, an operational amplifier has unlimited gain so if the non-inverting input is a fraction higher than the inverting input (there is more + than -), the output will go up to the supply voltage. Change the inputs around and the output will go to zero volts. In this format the operational amplifier is acting as a comparator, it compares the two inputs and changes the output accordingly.

With an infinite gain the amplifier is no good to amplify audio, which is where the feedback comes in. By making one of the inputs a percentage of the output the gain can be fixed, which allows the output to be a copy of the input but bigger. Now when the two inputs are compared and the output is adjusted, instead of it going up or down until it reaches 0 volts or V+, it stops at the point when the two inputs match and the output is at the required voltage.

Looking at the circuit diagram for the audio amplifier – it’s not obvious where the feedback is, this is because it is inside the IC. The TDA2822M or NJM2073D chip has fixed the gain so the output is about 90 times bigger than the input. To make the gain useful in our application, there is a potential divider on each channel that is fed into the IC (R1+R5 and R2+R6). Each of these reduces the input signal to only 10% of the original signal. This, therefore, reduces the overall gain of the amplifier to about 9 times the input to the circuit.

C3 is connected across the supply to make sure that it remains stable. The other capacitors have a filtering role, either to cut out high frequency noise or get the best out of the speaker.
Online Information

Two sets of information can be downloaded from the product page where the kit can also be reordered from. The ‘Essential Information’ contains all of the information that you need to get started with the kit and the ‘Teaching Resources’ contains more information on soldering, components used in the kit, educational schemes of work and so on and also includes the essentials. Download from:

www.kitronik.co.uk/2136

This kit is designed and manufactured in the UK by Kitronik

Telephone: +44 (0) 845 8380781 www.kitronik.co.uk/twitter
Sales email: sales@kitronik.co.uk www.kitronik.co.uk/facebook
Tech support email: support@kitronik.co.uk www.kitronik.co.uk/youtube
Web: www.kitronik.co.uk www.kitronik.co.uk/google

Every effort has been made to ensure that these notes are correct, however Kitronik accept no responsibility for issues arising from errors / omissions in the notes.

© Kitronik Ltd - Any unauthorised copying / duplication of this booklet or part thereof for purposes except for use with Kitronik project kits is not allowed without Kitronik’s prior consent.